ILMU ALAMIAH DASAR
TUGAS 14
(Tautologi, Kontradiksi, Ekuivalensi)
***
TAUTOLOGI DAN
KONTRADIKSI, EKUIVALENSI LOGIKA
A.
TAUTOLOGI
Tautologi
adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan
nilai kebenaran dari pernyataan-pernyataan komponennya. Sebuah Tautologi yang
memuat pernyataan Implikasi disebut Implikasi Logis. Untuk membuktikan apakah
suatu pernyataan Tautologi, maka ada dua cara yang digunakan. Cara pertama
dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai B (benar)
maka disebut Tautologi, dan cara kedua yaitu dengan melakukan penjabaran atau
penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika.[1][1]
Contoh:
Lihat pada
argumen berikut:
Jika Tono
pergi kuliah, maka Tini juga pergi kuliah. Jika Siska tidur, maka Tini pergi
kuliah. Dengan demikian, jika Tono pergi kuliah atau Siska tidur, maka Tini
pergi kulah.
Diubah ke
variabel proposional:
A Tono pergi kuliah
B Tini
pergi kuliah
C Siska tidur
Diubah lagi menjadi ekspresi logika yang
terdiri dari premis-premis dan kesimpilan. Ekspresi logika 1 dan 2 adalah
premis-premis, sedangkan ekspresi logika 3 adalah kesimpulan.
(1) A → B (Premis)
(2) C → B (premis)
(3) (A V C) → B (kesimpulan)
Maka sekarang
dapat ditulis: ((A → B) ʌ (C → B)) → ((A V C) → B
A
|
B
|
C
|
A → B
|
C → B
|
(A → B) ʌ (C
→ B)
|
A V C
|
(A V C) → B
|
|
B
B
B
B
S
S
S
S
|
B
B
S
S
B
B
S
S
|
B
S
B
S
B
S
B
S
|
B
B
S
S
B
B
B
B
|
B
B
S
B
B
B
S
B
|
B
B
S
S
B
B
S
B
|
B
B
B
B
B
S
B
S
|
B
B
S
S
B
B
S
B
|
B
B
B
B
B
B
BB
|
Dari tabel
kebenaran diatas menunjukkan bahwa pernyataan majemuk :
Contoh tautologi dengan menggunakan tabel kebenaran:
1. (p ʌ ~q) p
Pembahasan:
p
|
q
|
~q
|
(p ʌ ~q)
|
(p ʌ ~q)
p
|
B
B
S
S
|
B
S
B
S
|
S
B
S
B
|
S
B
S
S
|
B
B
B
B
|
Ini adalah tabel kebenaran yang menunjukkan
Tautologi dengan alasan yaitu semua pernyataannya bersifat benar atau True (T).
maka dengan perkataan lain pernyataan majemuk (p ʌ ~q) p selalu benar.
2. [(p q) ʌ p] p q
Pembahasan:
p
|
q
|
(p q)
|
(p q)
ʌ p
|
[(p q) ʌ p] p q
|
B
B
S
S
|
B
S
B
S
|
B
S
B
B
|
B
S
S
S
|
B
B
B
B
|
(1) (2) (3) (4) (5)
Berdasrkan tabel diatas pada kolom 5, nilai
kebenaran pernyataan majemuk itu adalah BBBB. Dengan perkataan lain, pernyataan
majemuk [(p q) ʌ p] p q selalu benar
Pembuktian dengan cara kedua yaitu dengan
penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum
ekuivalensi logika.
Contoh:
a. (p ʌ q) q
Penyelesaian:
(p ʌ q) q ~(p ʌ q) v q
~p v ~q v q
~p v T
Dari pembuktian diatas telah nampaklah bahwa
pernyataan majemuk dari (p ʌ q) q adalah tautologi
karena hasilnya T (true) atau benar.
Pembuktian dengan menggunakan tabel kebenaran
dari pernyataan majemuk (p ʌ q) q yaitu:
P
|
q
|
(p ʌ q)
|
(p ʌ q) q
|
B
B
S
S
|
B
S
B
S
|
B
S
S
S
|
B
B
B
T
|
Pada tabel diatas nampaklah bahwa kalimat
majemuk (p ʌ q) q
merupakan Tautologi.
b. q (p v
q)
penyelesaian:
q (p v q) ~q v (p v q)
~q v (q v p)
T v p
T
............(Tautologi)
B. KONTRADIKSI
Kontradiksi adalah kebalikan dari tautologi
yaitu suatu bentuk pernyataan yang hanya mempunyai contoh substansi yang salah,
atau sebuah pernyataan majemuk yang salah dalam segala hal tanpa memandang
nilai kebenaran dari komponen-komponennya. Untuk
membuktikan apakah suatu pernyataan tersebut kontradiksi, maka ada dua cara
yang digunakan. Cara pertama dengan menggunakan tabel kebenaran, yaitu jika
semua pilihan bernilai F atau salah maka
disebut kontradiksi, dan cara kedua yaitu dengan melakukan penjabaran atau
penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika.[4][4]
Contoh dari Kontradiksi:
1. (A ʌ ~A)
Pembahasan:
A
|
~A
|
(A ʌ ~A)
|
B
S
|
S
B
|
S
S
|
Dari tabel kebenaran diatas dapatlah
disimpulkan bahwa pernyataan majemuk (A ʌ ~A) selalu
salah.
2. P ʌ (~p ʌ q)
Pembahasan:
p
|
q
|
~p
|
(~p
ʌ q)
|
P ʌ (~p
ʌ q)
|
B
B
S
S
|
B
S
B
S
|
S
S
B
B
|
S
S
B
S
|
S
S
S
S
|
Ini adalah tabel kebenaran yang menunjukkan
kontradiksi dengan alasan yaitu semua pernyataan bernilai salah (F).
C. Ekuivalensi
Logika
Dua atau lebih pernyataan majemuk yang mempunyai nilai
kebenaran sama disebut ekuivalensi logika dengan notasi “ dua buah pernyataan majemuk dikatakan
ekuivalen, jika kedua pernyataan majemuk itu mempunyai nilai kebenaran yang
sama untuk semua kemungkinan nilai kebenaran pernyataan-pernyataan komponen-komponennya.
Hukum-Hukum Ekuivalensi Logika:
1. Hukum
komutatif:
p ʌ q q ʌ p
p v q q v p
2. Hukum asosiatif:
(p ʌ q) ʌ r p ʌ (q ʌ r)
(p v q) v r p v (q v r)
3. Hukum
distributif:
p ʌ (q v r) (p ʌ q) v (p ʌ r)
p v (q ʌ r) (p v q) ʌ (p v r)
4. Hukum
identitas:
p ʌ T p
p v F p
5. Hukum ikatan (dominasi):
P v T T
P v F F
6. Hukum negasi:
P v ~p T
P ʌ ~p F
7. Hukum negasi ganda (involusi):
~(~p) p
8. Hukum idempoten:
P ʌ p p
p v p p
9. Hukum de morgan:
~( p ʌ q) ~p v ~q
~(p v q) ~p ʌ ~q
10. Hukum
penyerapan (absorpsi):
p v (P ʌ q) p
P ʌ (p v q) p
11. Hukum T dan F:
~T F
~F T
12. Hukum
implikasi ke and/or:
Dengan adanya
hukum-hukum diatas, penyelesaian soal-soal baik yang bersifat tautologi,
kontradiksi dan ekuivalensi logika tidak hanya menggunakan tabel kebenaran
namun juga bisa dengan menggunakan jalan penurunan yaitu dengan memanfaatkan 12
(dua belas) hukum-hukum ekuivalensi logika tersebut.
Dengan
menggunakan prinsip-prinsip di atas, maka kalimat-kalimat yang kompleks dapat
disederhanakan, seperti contoh berikut:
1. Buktikan
ekuivalensi berikut: ~(p v ~q) v (~p ʌ ~q) ~p
Jawab:
~(p v ~q) v (~p ʌ ~q) (~p ʌ q) v (~p ʌ ~q)
~p ʌ (q v ~q)
~p ʌ T
~p
...........(terbukti)
2. Tunjukkan
bahwa: ~(p v q) (~p ʌ ~q)
Tabel
kebenaran ~(p v q) dan (~p ʌ ~q) yaitu:
p
|
q
|
~p
|
~q
|
p v q
|
~(p v q)
|
(~p ʌ ~q)
|
B
B
S
S
|
B
S
B
S
|
S
S
B
B
|
S
B
S
B
|
B
B
B
S
|
S
S
S
B
|
S
S
S
B
|
DAFTAR PUSTAKA
Munir, Rinaldi.
2005. Matematika Diskrit. Bandung: Informatika.
Wirodikromo,
Sartono. 2007. Matematika. Jakarta: Erlangga.
Limbong, A dan
A. Prijono. 2006. Matematika Diskrit. Bandung: CV Utomo.
Soesianto, F
dan Djoni Dwijono.2003. Logika Proposisional. Yogyakarta: Andi.
Upschutz,
Seymour dan Marc Lars Lipson. 2008. Matematika Diskrit. Jakarta:
Erlangga.
0 komentar:
Posting Komentar