Minggu, 11 Mei 2014

PROPOSISI


ILMU ALAMIAH DASAR
TUGAS 12
(Proposisi)

***

Proposisi
Di dalam matematika, tidak semua kalimat berhubungan dengan logika. Hanya kalimat yang bernilai benar atau salah saja yang digunakan dalam penalaran. Kalimat tersebut dinamakan proposisi (preposition).
Proposisi adalah kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya (truth value).
Contoh berikut ini dapat mengilustrasikan kalimat yang merupakan proposisi dan mana yang bukan.
Contoh 1.1
a)    6 adalah bilangan genap
b)    Soekarno adalah Presiden Indonesia yang pertama
c)    2 + 2 = 4
d)    Ibukota Provinsi Jawa Barat adalah Semarang
e)    12 ≥ 19
f)     Kemarin hari hujan
g)    Suhu di permukaan laut adalah 21 derajat celcius
h)   Pemuda itu tinggi
i)     Kehidupan hanya ada di Planet Bumi
Semuanya merupakan proposisi. Proposisi a, b, c bernilai benar, tetapi proposisi d salah karena ibukota Jawa Barat seharusnya Bandung dan proposisi e bernilai salah karena seharusnya 12 ≤ 19. Proposisi f sampai I memang tidak dapat langsung ditetapkan kebenarannya, namun satu hal yang pasti, proposisi-proposisi tersebut tidak mungkin benar dan salah sekaligus. Kita bisa menetapkan nilai proposisi tersebut benar atau salah. Misalnya, proposisi f bias kita andaikan benar (hari kemarin memang hujan) atau salah (hari kemarin tidak hujan). Demikian pula halnya untuk proposisi g dan h. Proposisi i bias benar atau salah, karena sampai saat ini belum ada ilmuwan yang dapat memastikan kebenarannya.
Contoh 1.2
a)    Jam berapa kereta api Argo Bromo tiba di Gambir?
b)    Serahkan uangmu sekarang!
c)    x + 3 = 8
d)    x > 3
bukan proposisi. Kalimat a adalah kalimat Tanya, sedangkan kalimat b adalah kalimat perintah, keduanya tidak mempunyai nilai kebenaran. Dari contoh 1.1 dan 1.2 di atas, dapat disimpulkan bahwa proposisi selalu dinyatakan sebagai kalimat berita, bukan sebagai kalimat Tanya maupun kalimat perintah. Kalimat c dan d bukan proposisi karena kedua kalimat tersebut tidak dapat ditentukan benar maupun salah sebab keduanya mengandung peubah (variable) yang tidak dispesifikasikan nilainya. Tetapi kalimat
“Untuk sembarang bilangan bulat n ≥ 0, maka 2n adalah bilangan genap”
Bidang logika yang membahas proposisi dinamakan kalkulus proposisi (propositional calculus) atau logika proposisi (propositional logic).
Secara simbolik, proposisi biasanya dilambangkan dengan huruf kecil seperti p, q, r, …. misalnya,
p: 6 adalah bilangan genap,
Untuk mendefinisikan p sebagai proposisi “6 adalah bilangan genap”. Begitu juga untuk
q : soekarno adalah Presiden Indonesia yang pertama.
r : 2 + 2 = 4.
dan sebagainya.
Mengkombinasikan Proposisi
Operator yang digunakan untuk mengkombinasikan proposisi disebut operator logika. Operator logika dasar yang digunakan  adalah dan (and), atau (or), dan tidak (not). Dua operator pertama dinamakan operator biner karena operator tersebut mengoperasikan dua buah proposisi, sedangkan  operator ketiga dinamakan operator uner karena ia hanya membutuhkan satu buah proposisi.
Proposisi baru yang diperoleh dari pengkombinasian tersebut dinamakan proposisi majemuk (compound proposition). proposisi yang bukan merupakan kombinasi proposisi lain disebut proposisi atomik. Proposisi majemuk ada tiga macam, yaitu konjungsi, disjungsi, dan ingkaran. Ketiganyadidefinisikan sebagai berikut:
DEFINISI. Misalkan  dan adalah proposisi. Konjungsi (conjunction) dan , dinyatakan dengan notasi , adalah proposisi
p dan
Disjungsi (disjunction)  dan , dinyatakan dengan notasi , adalah proposisi
p atau
Ingkaran atau (negation) dari , dinyatakan dengan p, adalah proposisi tidak p
Catatan:
  1. Beberapa literatur menggunakan notasi “p”, ””, atau ”not p” untuk menyatakan lingkaran.
  2. Kata “tidak” dapat dituliskan di tengah pernyataan. Jika kata “tidak” diberikan di awal pernyataan maka ia biasanya disambungkan dengan kata “benar” menjadi “tidak benar”. Kata “tidak” dapat juga diganti dengan “bukan” bergantung dengan rasa bahasa yang tepat untuk pernyataan tersebut.
Berikut contoh-contoh proposisi majemuk dan notasi simboliknya. Ekspresi proposisi majemuk dalam notasi simbolik disebut juga ekspresi logika.
Contoh 1.2
Diketahui proposisi-proposisi berikut:
p: Hari ini hujan
q : Murid-murid diliburkan dari sekolah
Maka
pq : Hari ini hujan dan murid-murid diliburkan dari sekolah
pq : Hari ini hujan atau murid-murid diliburkan dari sekolah
p : Tidak benar hari ini hujan (atau dalam kalimat lain yang lebih lazim: Hari ini tidak hujan)
Tabel Kebenaran
Nilai kebenaran dari proposisi majemuk ditentukan oleh nilai kebenaran dari proposisi atomiknya dan cara mereka dihubungkan oleh operator logika.
Definisi. Misalkan p dan q adalah proposisi.
  • Konjungsi p ^ q bernilai benar jika p dan q keduanya benar, selain itu nilainya salah
  • Disjungsi p v q bernilai salah jika p dan q keduanya salah, selain itu nilainya benar
  • Negasi p, yaitu ~p, bernilai benar jika p salah, dan sebaliknya
Misalkan
p: 17 adalah bilangan prima
q: bilangan prima selalu ganjil
jelas bahwa p bernilai benar dan q bernilai salah sehingga konjungsi
p ^ q: 17 adalah bilangan prima dan bilangan prima selalu ganjil adalah salah .
Satu cara yang praktis untuk menentukan nilai kebenaran proposisi majemuk adalah menggunakan tabel kebenaran. Tabel kebenaran menampilkan hubungan antara nilai kebenaran dari proposisi atomik. Tabel 1.1 menunjukkan tabel kebenaran untuk konjungsi, disjungsi, dan ingkaran. Pada tabel tersebut, T=true(benar), dan F=false(salah).
Tabel 1.1 Tabel kebenaran konjungsi, disjungsi, dan ingkaran
p
q
p ^ q
T
T
T
T
F
F
F
T
F
F
F
F
p
q
p  v q
T
T
T
T
F
T
F
T
T
F
F
F

p
q
T
F
F
T
Contoh soal: Jika p, q, r adalah proposisi. Bentuklah tabel kebenaran dari ekspresi logika
(p ^ q) v (~q ^ r)
Penyelesaian:
Ada 3 buah proposisi atomic di dalam ekspresi logika dan setiap proposisi hanya mempunyai 2 kemungkinan nilai, sehingga jumlah kombinasi dari semu proposisi tersebut adalah  buah. Tabel kebenaran dari proposisi (p ^ q) v (~q ^ r) ditunjukkan pada tabel 1.2.
Tabel 1.2 tabel kebenaran proposisi (p ^ q) v (~q ^ r)
p
q
r
p ^ q
~q
~q ^ r
(p ^ q) v (~q ^ r)
T
T
T
T
F
F
T
T
T
F
T
F
F
T
T
F
T
F
T
T
T
T
F
F
F
T
F
F
F
T
T
F
F
F
F
F
T
F
F
F
F
F
F
F
T
F
T
T
T
F
F
F
F
T
F
F
Proposisi majemuk dapat selalu bernilai benar untuk berbagai kemungkinan nilai kebenaran masing-masing proposisi atomiknya, atau selalu bernilai salah untuk berbagai kemungkinan nilai kebenaran masing-masing proposisi atomiknya. Jadi, sebuah proposisi majemuk disebut tautologi jika ia benar untuk semua kasus, sebaliknya disebut kontradiksi jika ia salah untuk semua kasus.
Yang dimaksud dengan “semua kasus” di dalam definisi si atas adalah semua kemungkinan nilai kebenaran dari proposisi atomiknya. Proposisi tautologi dicirikan pada kolom terakhir pada tabel kebenarannya hanya memuat True. Proposisi kontradiksi dicirikan pada kolom terakhir pada tabel kebenarannya hanya memuat False.
Hukum – Hukum Proposisi
Proposisi, dalam kerangka hubungan ekivalen logika, memenuhi sifat-sifat yang dinyatakan dalam sejumlah hukum pada tabel di bawah.Beberapa hukum tersebut mirip dengan hukum aljabar pada system bilangan riil, misalnya a(b + c) = ab + ac, yaitu hukum distributif, sehingga kadang-kadang hukum logika proposisi dinamakan juga hukum-hukum aljabar proposisi.
  1. 1. Hukum identitas
i.            p v F ó p
ii.            p ^ T ó p
  1. 2. Hukum null dominasi
i.            p ^ F ó F
ii.            p v T ó T
  1. 3. Hukum negasi
i.            p v ~p ó T
ii.            p ^ ~p ó F
  1. Hukum idempotent
i.            p v p ó p
ii.            p ^ p ó p
  1. 5. Hukum involusi
~(~p) ó p
  1. Hukum penyerapan
i.            p v (p ^ q) ó p
ii.            p ^ (p v q) ó p
  1. 7. Hukum komutatif
i.            p v q ó q v p
ii.            p ^ q ó q ^ p
  1. Hukum assosiatif
i.            p v (q v r) ó (p v q) v r
ii.            p ^ (q ^ r) ó (p ^ q) ^ r
  1. 9. Hukum distributif
i.            p v (q ^ r) ó (p v q) ^ (p v r)
ii.            p ^ (q v r) ó (p ^ q) v (p ^ r)
10.  Hikum de morgan
i.            ~(p ^ q) ó ~p v ~q
ii.            ~(p v q) ó ~p ^ ~q
Hukum-hukum logika di atas bermanfaat untuk membuktikan ke-ekivalenan dua buah proposisi. Selain menggunakan tabel kebenaran, ke-ekivalenan dapat dibuktikan dengan hukum-hukum logika, khususnya pada proposisi majemuk yang mempunyai banyak proposisi atomik. Bila suatu proposisi majemuk mempunyai n buah proposisi atomic, maka table kebenarannya terdiri dari  baris. Untuk n yang besar jelas tidak praktis menggunakan tabel kebenaran, misalnya untuk n=10 terdapat  baris di dalam tabel kebenarannya.
Daftar Pustaka : Munir, Rinaldi, Matematika Diskrit, Informatika, 2005

Share:

0 komentar:

Posting Komentar